Salience Rank: Efficient Keyphrase Extraction with Topic Modeling

نویسندگان

  • Nedelina Teneva
  • Weiwei Cheng
چکیده

Topical PageRank (TPR) uses latent topic distribution inferred by Latent Dirichlet Allocation (LDA) to perform ranking of noun phrases extracted from documents. The ranking procedure consists of running PageRank K times, where K is the number of topics used in the LDA model. In this paper, we propose a modification of TPR, called Salience Rank. Salience Rank only needs to run PageRank once and extracts comparable or better keyphrases on benchmark datasets. In addition to quality and efficiency benefits, our method has the flexibility to extract keyphrases with varying tradeoffs between topic specificity and corpus specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles

We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four crite...

متن کامل

Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents

We introduce a framework for topical keyphrase generation and ranking, based on the output of a topic model run on a collection of short documents. By shifting from the unigramcentric traditional methods of keyphrase extraction and ranking to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. Our method defines a function to rank topical keyphrases...

متن کامل

DFKI KeyWE: Ranking Keyphrases Extracted from Scientific Articles

A central issue for making the content of a scientific document quickly accessible to a potential reader is the extraction of keyphrases, which capture the main topic of the document. Keyphrases can be extracted automatically by generating a list of keyphrase candidates, ranking these candidates, and selecting the top-ranked candidates as keyphrases. We present the KeyWE system, which uses an a...

متن کامل

TermITH-Eval: a French Standard-Based Resource for Keyphrase Extraction Evaluation

Keyphrase extraction is the task of finding phrases that represent the important content of a document. The main aim of keyphrase extraction is to propose textual units that represent the most important topics developed in a document. The output keyphrases of automatic keyphrase extraction methods for test documents are typically evaluated by comparing them to manually assigned reference keyphr...

متن کامل

Topical Word Trigger Model for Keyphrase Extraction

Keyphrase extraction aims to find representative phrases for a document. Keyphrases are expected to cover main themes of a document. Meanwhile, keyphrases do not necessarily occur frequently in the document, which is known as the vocabulary gap between the words in a document and its keyphrases. In this paper, we propose Topical Word Trigger Model (TWTM) for keyphrase extraction. TWTM assumes t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017